

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # sentspace

<!– ABOUT THE PROJECT –>
About

sentspace
gives users a better understanding of the distribution of linguistic stimuli,
specifically, sentences, in comparison with large corpora. sentspace achieves
this using a collection of psycholinguistic datasets and linguistic features.
Imagine you have collected a set of sentences for use in a language experiment, or generated
sentences using an artificial neural network language model. How does your set of sentences compare to
naturally occurring sentences? What are the dimensions along which your sentences deviate from
normal?
sentspace provides you with numerical estimates of these values, as well as
allows you to visualize the high-dimensional space in a web-based application.

Online interface: http://sentspace.github.io/hosted

Screencast video demo: https://youtu.be/a66_nvcCakw

CLI usage demo:
<!– ![image](https://i.imgur.com/lI6Wose.gif) –>

[Documentation](https://aalok-sathe.github.io/sentspace/index.html) [![CircleCI](https://circleci.com/gh/aalok-sathe/sentspace/tree/main.svg?style=svg)](https://circleci.com/gh/aalok-sathe/sentspace/tree/main)
<!– request read access to the [project doc](https://docs.google.com/document/d/1O1M7T5Ji6KKRvDfI7KQXe_LJ7l9O6_OZA7TEaVP4f8E/edit#). –>

Documentation is generated using pdoc3 and available online (click on the title above).

Usage

1. CLI
Example: get lexical and embedding features for stimuli from a csv containing columns for ‘sentence’ and ‘index’.
```bash
$ python3 -m sentspace -h
usage:


	positional arguments:
	input_file            path to input file or a single sentence. If supplying a file, it must be .csv .txt or .xlsx, e.g., example/example.csv



	optional arguments:
	
	-h, --help

	show this help message and exit






	-sw STOP_WORDS, –stop_words STOP_WORDS
	path to delimited file of words to filter out from analysis, e.g., example/stopwords.txt






	-b BENCHMARK, --benchmark BENCHMARK

	path to csv file of benchmark corpora For example benchmarks/lexical/UD_corpora_lex_features_sents_all.csv



	-p PARALLELIZE, --parallelize PARALLELIZE

	use multiple threads to compute features? disable using -p False in case issues arise.



	-o OUTPUT_DIR, --output_dir OUTPUT_DIR

	path to output directory where results may be stored





-of {pkl,tsv}, –output_format {pkl,tsv}
-lex LEXICAL, –lexical LEXICAL


compute lexical features? [False]





	-syn SYNTAX, –syntax SYNTAX
	compute syntactic features? [False]



	-emb EMBEDDING, –embedding EMBEDDING
	compute high-dimensional sentence representations? [False]



	-sem SEMANTIC, –semantic SEMANTIC
	compute semantic (multi-word) features? [False]






	--emb_data_dir EMB_DATA_DIR

	path to output directory where results may be stored









```

2. As a library
Example: get embedding features in a script
```python
import sentspace

s = sentspace.Sentence(‘The person purchased two mugs at the price of one.’)
emb_features = sentspace.embedding.get_features(s)
```

Example: parallelize getting features for multiple sentences using multithreading
```python
import sentspace


	sentences = [
	‘Hello, how may I help you today?’,
‘The person purchased three mugs at the price of five!’,
“She’s leaving home.”,
‘This is an example sentence we want features of.’


]








# construct sentspace.Sentence objects from strings
sentences = [*map(sentspace.Sentence, sentences)]
# make use of parallel processing to get lexical features for the sentences
lex_features = sentspace.utils.parallelize(sentspace.lexical.get_features, sentences,


wrap_tqdm=True, desc=’Computing lexical features’)




```

Installing

1. Install using Conda and [Poetry](https://python-poetry.org/)
Prerequisites: conda
1. Use your own or create new conda environment: conda create -n sentspace-env python=3.8 (if using your own, we will assume your environment is called sentspace-env)

	Activate it: conda activate sentspace-env

2. Install poetry: curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -
<!– 3. Manually install (polyglot)[] dependencies (this step is necessary as some of the packages need to be installed using the system’s package manager, rather than conda or pip) –>
3. Install polyglot dependencies using conda: conda install -c conda-forge pyicu morfessor icu -y
4. Install remaining packages using poetry: poetry install

If after the above steps the installation gives you trouble, you may need to refer to: [polyglot install instructions](https://polyglot.readthedocs.io/en/latest/Installation.html), which lists how to obtain ICU, a dependency for polyglot.

To use sentspace after installation, simply make sure to have the conda environment active and all packages up to date using poetry install

2. Container-based usage (Recommended!)
[![CircleCI](https://circleci.com/gh/aalok-sathe/sentspace/tree/circle-ci.svg?style=svg)](https://circleci.com/gh/aalok-sathe/sentspace/tree/circle-ci)

Requirements: singularity or docker.

<!– #### first, some important housekeeping stuff
- make sure you have singularity/docker, or load/install it otherwise

	which singularity or which docker

	make sure you have set the ennvironment variables that specify where singularity/docker will cache its images. if you don’t do this, singularity will make assumptions and you may end up with a full disk and an unresponsive server, if running on a server with filesystem restrictions. you should have about 5GB free space at the target location. –>

<!– #### next, running the container (automatically built and deployed to Docker hub) –>

Singularity:
`bash
singularity shell docker://aloxatel/sentspace:latest
`
Alternatively, from the root of the repo, bash singularity-shell.sh). this step can take a while when you run it for the first time as it needs to download the image from docker hub and convert it to singularity image format (.sif). however, each subsequent run will execute rapidly.

Docker: use [corresponding commands for Docker](https://docs.docker.com/engine/reference/commandline/exec/).

now you are inside the container and ready to run sentspace!

3. Manual install (use as last resort)
On Debian/Ubuntu-like systems, follow the steps below. On other systems (RHEL, etc.),
substitute commands and package names with appropriate alternates.
```bash
# optional (but recommended):
# create a virtual environment using your favorite method (venv, conda, …)
# before any of the following

# install basic packages using apt (you likely already have these)
sudo apt update
sudo apt install python3.8 python3.8-dev python3-pip
sudo apt install python2.7 python2.7-dev
sudo apt install build-essential git

# install ICU
DEBIAN_FRONTEND=”noninteractive” TZ=”America/New_York” sudo apt install python3-icu

# install ZS package separately (pypi install fails)
python3.8 -m pip install -U pip cython
git clone https://github.com/njsmith/zs
cd zs && git checkout v0.10.0 && pip install .

# install rest of the requirements using pip
cd .. # make sure you’re in the sentspace/ directory
pip install -r ./requirements.txt
polyglot download morph2.en
```

Submodules

In general, each submodule implements a major class of features. You can run each module on its own by specifying its flag and 0 or 1 with the module call:
`bash
python -m sentspace -lex {0,1} -syn {0,1} -emb {0,1} <input_file_path>
`

lexical
Obtain lexical (word-level) features that are not dependendent on the sentence context.
These features are returned on a word-by-word level and also averaged at the sentence level to provide each sentence a corresponding value.
- typical age of acquisition
- n-gram surprisal n={1,2,3,4}
- etc. (comprehensive list will be updated)

syntax
Description pending

embedding
Obtain high dimensional representations of sentences using word-embedding and contextualized encoder models.
- glove
- Huggingface model hub (gpt2-xl, bert-base-uncased)

semantic
Multi-word features computed using partial or full sentence context.
- PMI (pointwise mutual information)
- Language model-based perplexity/surprisal
Not Implemented yet

Contributing

Any contributions you make are greatly appreciated, and no contribution is too small to contribute.

	Fork the project on Github [(how to fork)](https://docs.github.com/en/get-started/quickstart/fork-a-repo)

	Create your feature/patch branch (git checkout -b feature/AmazingFeature)

	Commit your changes (git commit -m ‘Add some AmazingFeature’)

	Push the branch (git push origin feature/AmazingFeature)

	Open a Pull Request (PR) and we will take a look asap!

Whom to contact for help
- gretatu % mit ^ edu
- asathe % mit ^ edu

	2020-2022 EvLab, MIT BCS

 # sentspace syntax module

This module computes leftcorner and DLT (dependency lexicality theory)
features for sentences (one at a time). We use parser and scripts provided
as-is from Cory Shain and the modelblocks collection of utilities.
Unfortunately, producing GCG-15 parse trees using the utilities in this
subsection involves a large overhead in terms of time taken to load
and process sentences. Within sentspace we will simply query an always-running
web server that will produce parse trees for a sentence upon request.
Details about how to set up and run the webserver are available at
github.com/aalok-sathe/berkeley-interact.

rest of README as-is below

van Schijndel et al. (2013) parser implementation

This directory contains scripts to run an implementation of the parser
described in van Schijndel et al. (2013), pre-trained on sections 2-21
of the Wall Street Journal corpus of the Penn Treebank (Marcus et al.,
1993). This is the pre-trained model that was used to compute PCFG
surprisal values investigated in Shain, Blank, et al. (2020).

The system produces a table of decisions that describe the 1-best left-
corner parse of each input sentence, along with word surprisal
computed by marginalizing over all parses in the (5000-dimensional)
beam at each timestep.

All scripts assume that this directory is your working directory. In
addition, all scripts write to standard out, and will need to be
redirected to files.

Input Format

The system requires textual input, one sentence per line, space-
tokenized following the Penn Treebank standard (with punctuation
and contractions separated out as separate tokens), like so:

This is a sentence .
Is n’t this story , actually , very interesting ?

Because parses are represented using parentheses for bracketing,
it’s also usually a good idea to convert parentheses in the input
to textual tokens, commonly -LRB- for left paren and -RRB- for
right paren. If you don’t do this and your input has parentheses,
your output trees may not be machine-readable (because of unmatched
brackets).

For convenience, this directory contains the script tokenize.sh,
which automatically tokenizes raw text as above, and also normalizes
punctuation (e.g. parentheses). To use it on text file example_raw.txt
and redirect the output to file example.txt, run:
`
./tokenize.sh example_raw.txt > example.txt
`

Parsing

Parsing serves two purposes in this pipeline: generating word-by-word
PCFG surprisal measures, and generating parse trees that can be used
to extract syntactic features. A different parser is used for each of
these purposes: synproc is (van Schijndel et al, 2013) is required
for surprisal, but a faster and more accurate chart parser is used
to compute trees.

In the examples below, the filenames example.txt, output.txt,
surp.txt, and trees.txt can (and should) be changed to reflect
your use case.

PARSING FOR SURPRISAL:

Given input example.txt, and a desired output file output.txt,
run the parser as follows:

`
./parse_surp.sh example.txt > output.txt
`

This will generate a space-delimited table of parse decisions that
are not very human-readable. One column of the table, totsurp,
contains PCFG surprisal values. This table can be used directly,
or, for convenience, you can do the following, which just deletes
columns irrelevant to surprisal:

`
./get_surp.sh output.txt > surp.txt
`

If you want to see the trees, run:

`
./get_trees.sh output.txt > trees.txt
`

PARSING FOR TREES:

Given input example.txt, and a desired output file output.txt,
run the parser as follows:

`
./parse_trees.sh example.txt > output.txt
`

This will generate a forest of maximum likelihood parse trees,
one per line. Note that there is substantial initial overhead
from loading the model into memory.

DLT features

Given GCG-15 trees (one per line) example_trees.txt generated either
via hand annotation or automatic parsing (see PARSING FOR TREES above),
DLT features can be extracted as follows:

`
./dlt.sh example_trees.txt > output.txt
`

This will generate a space-delimited table of DLT features, one row
per token. The key columns of interest are the following:

	dlt: DLT integration cost per Gibson (2000)

	dlt{,c}{,v}{,m}: DLT integration cost with respective combination

of C, V, and M modifications (see Shain et al., 2016, for details)
- dlts: DLT storage cost

Left-corner features

Given GCG-15 trees (one per line) example_trees.txt generated either
via hand annotation or automatic parsing (see PARSING FOR TREES above),
left-corner features can be extracted as follows:

`
./leftcorner.sh example_trees.txt > output.txt
`

This will generate a space-delimited table of left-corner features, one
row per token. The key columns of interest are the following (for details,
see Rasmussen & Schuler, 2018):

	noF: End of constituent

	noFlen: Length of consituent (in words)

	noFdr: Length of constituent (in DLT-style discourse referents)

	noFdrv: Length of constituent (in DLT-style discourse reference using -V modification)

	yesJ: End of center-embedding

	startembdMin: Start of multiword center-embedding

	endembdMin: End of multiword center-embedding

	embdlen: Length of multiword center-embedding (in words)

	embddr: Length of multiword center-embedding (in DLT-style discourse referents)

	embddrv: Length of multiword center-embedding (in DLT-style discourse referents using -V modification)

	embddepthMin: Memory stack depth

Citations

Relevant citations for these resources are given in the
citations.bib file in this directory.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

